
NPC engine: a High-Performance, Modular,
and Domain-Agnostic MCTS Framework for Emergent Narrative

Stéphane Magnenat, Henry Raymond, David Enderlin, Sven Knobloch, Robert W. Sumner
Department of Computer Science, ETH Zurich

stephane.magnenat@inf.ethz.ch, henry.raymond@inf.ethz.ch, robert.sumner@inf.ethz.ch

Abstract

The quality of emergent narrative is strongly linked to the
capabilities of the underlying simulation. A powerful way to
drive character activity is to use a performant and dependable
planner. In this paper, we present a domain-agnostic multi-
agent Monte Carlo tree search planner implemented using the
Rust programming language. The planner supports tasks of
varying duration and a dynamic number of agents with het-
erogeneous properties. It also provides optional concurrency,
allowing for scalable simulations of many agents planning in
parallel on multiple threads. In addition to simulation-based
rollout, it supports custom state value estimators and offers
a basic adaptive implementation using neural networks. The
planner also includes a variety of debugging features, such
as the ability to plot the search tree. For easy adoption, we
provide several documented application examples.

As defined by Ryan (2018), emergent narrative is “nar-
rative that emerges out of computer simulation of character
activity, [...]”. The quality of emergent narrative is therefore
inherently linked to the believably and sensibleness of char-
acter behavior within the simulation. Characters need to pick
appropriate actions for the given circumstances, a task opti-
mally performed by a planning algorithm. As a result, the
strengths of the utilized planning algorithm fundamentally
determine the apparent intelligence of agents, and in turn
defines the applicability of a simulation to emergent narra-
tive.

The past decade has seen tremendous improvements in the
capabilities of planning algorithms and other AI agent con-
trol techniques, but only in specific applications. The most
noteworthy examples – reaching super-human performance
– all combine multiple techniques. For example, the best
board game players AlphaGo, AlphaZero and MuZero com-
bine Monte Carlo Tree Search (MCTS) planning and deep
learning (Schrittwieser et al. 2020), while the best Starcraft 2
player AlphaStar combines reinforcement learning and neu-
ral networks (Vinyals et al. 2019). These successes were
achieved by large teams focused on specific types of games.
So far, this progress has not translated to a similar increase
of agent intelligence in more general applications.

We believe a key reason to be the difficulty of developing
industry-grade AI algorithms. For instance, implementing a

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

correct and efficient MCTS planner is demanding, as debug-
ging search algorithms is tedious due to large state spaces
needing inspection. Moreover, efficiency and ease of use
typically conflict with domain expressiveness. Small bugs
can easily nullify the intelligence gain that the planner would
otherwise offer. At times, bugs can be so hard to identify that
they may lead to inaccurate research results.

The time invested into the development of reliable custom
planners presents a significant cost that likely holds back re-
search. This is especially true in the field of emergent narra-
tive, where planning is central to character behavior. We be-
lieve that a generic and reliable planning framework would
facilitate and encourage exploring new research questions in
this field.

Related work
Traditionally, narrative planning is performed on the whole
storyworld at once, for instance with a goal satisfaction plan-
ner (Ware and Young 2014). However, recently, there has
been a growing interest in using optimization-based MCTS
planners. In the context of murder puzzle story generation,
Kartal and colleagues plan for the whole world but use MCTS
in an iterative fashion, optimizing a believability metric and
stopping when the goal is reached (Kartal, Koenig, and
Guy 2014). More recently, taking a distributed approach,
Jaschek and colleagues have explored per-agent MCTS plan-
ning (Jaschek et al. 2019). In that work, agents plan over
a world described in linear logic, each independently opti-
mizing their own reward, aiming at belongingness and love,
self-esteem and respect and self-actualization. The murder
mystery emerges from the interaction between these agents.

In this paper, we propose a generic software framework
aiming at providing a solid foundation on which specific do-
mains, such as world simulations or linear logic, can be im-
plemented without having to worry about the implementa-
tion details of MCTS. There have been attempts to provide
a general framework for tree-search–based AI players for
some time (Pell 1996). A recent example is general board
game (Konen 2019), that defines common interfaces for
board games, game states and their AI agents. It offers multi-
ple algorithms, including MCTS and temporal-difference re-
inforcement learning. However, all agents execute actions in
turn and each action must last exactly one tick, hindering
the applicability of this framework beyond board games. It

is written in Java and its abstractions are based on dynamic
dispatch.

In the last few years, the Rust programming language1 –
which focuses on performance and memory safety – has in-
creasingly been selected as the language of choice to build
complex and dependable software (Fulton et al. 2021). In
that context, several projects2 have leveraged the rich type
system offered by Rust to implement re-usable MCTS algo-
rithms using generics. However, all focus on domains where
a static number of agents have actions of equal duration.
This lack of dynamism hinders the use of these planners in
more complex domains, which is a requirement for many
emergent narrative applications.

Contributions
We present a generic and modular implementation of a
domain-agnostic multi-agent MCTS planner. Our imple-
mentation in Rust is self-contained, efficient, and inte-
grates seamlessly with machine learning methods. It sup-
ports advanced features such as actions of varying dura-
tion and a dynamic number of agents over time. It also
provides optional concurrency, allowing scalable simula-
tions of many agents on multiple CPU cores. It is available
at github.com/ethz-gtc/npc-engine. The repository also con-
tains examples showcasing the use of the planner in a variety
of domains.

Design
Figure 1 shows a simplified diagram of the core software
architecture of our planner. It is built around a Rust struct
MCTS that is generic over a trait3 Domain, implemented
as compile-time user code. Through static functions, the
Domain allows the planner to retrieve the visible agents,
obtain their possible actions, and compute the current value
of a given agent in a specific state.

The actual state that is explored in the search tree is de-
composed into two elements: a base State which is con-
stant over the search tree, and a Diff that changes per node
– depending on the executed actions – and represents the dif-
ference to the base state. These are implemented as associ-
ated types4. This split minimizes the amount of data copied
and stored at each node. Combined with the use of generics
for domain definition which allows for compile-time opti-
mization, this design offers excellent performance.

The planner supports an arbitrary number of possibly-
heterogeneous agents (for example a global bookkeeping
agent along regular agents). It also supports the appearance
and disappearance of agents, even within a single planning
tree (for example a domain in which agents are born and
die). As a result, the planner is usable to implement rich and
complex domains without any change to the core algorithm.

1www.rust-lang.org
2For example, the mcts, arbor and board-game libraries.
3A trait in Rust corresponds to an interface, when used for dy-

namic dispatch, or to a C++ concept, when used in generics.
4A generic in Rust, used as an output type of a trait.

The agents’ actions (abstracted by a Task trait in the
code) can last a variable length of time, specified as a num-
ber of abstract ticks. This length can change in function of
the agent and the state. The user can write their own ac-
tions by implementing the Task trait. After execution, an
action can return a subsequent forced action, meaning that
the agent will not perform any planning at that step.

The planner keeps a queue of agents ordered by the tick
in which their current action ends, hence the order of agents
is not necessarily round-robin: a single agent might select
multiple actions in a row, if other agents are performing
longer-term actions. Planned-for actions might become in-
valid when they are about to be executed. In this case, the
user can define the outcome: prune that action’s subtree (as
in board games), or re-plan (as in simulations).

During planning, in the MCTS expansion step, a new node
is created and an expected value assigned to each agent. By
default, the planner uses a standard simulation-based rollout.
However, this can be substituted by custom state value esti-
mators, for example based on machine learning. Our frame-
work includes a basic neural network implementation with
leaky ReLU activation function.

A planning domain is unlikely to be error-free from the
start, and debugging tree algorithms is notoriously difficult.
To aid in that task, we provide multiple debugging features
including tracing the execution using Rust’s logging func-
tionality and plotting search trees as graphs5 (Figure 2).

Planners are often used as part of a world update loop. To
support that, we provide two Executor helpers: one for
sequential planning and execution, as well as one for paral-
lel multi-threaded planning and execution. For the latter, the
planning time itself is reflected in the search tree through a
built-in Planning task. Combined with each agent plan-
ning on a limited spatial and conceptual horizon, this ap-
proach allows for linearly scalable multi-agent simulations.

Examples and Experiments
Our planner includes several examples to illustrate its use
and key capabilities. These can be run with the command
cargo run --example NAME where NAME can be:

• tic-tac-toe: a simple implementation of the board
game with command line input to play against the AI.

• capture: an AI vs AI capture-the-flag competition on a
topological graph. This domain demonstrates actions of
varying duration, a bookkeeping agent that replenishes
collectibles, disappearance of agents upon death, and the
use of the single-threaded executor utility. It also show-
cases emergent strategies, such as weakening the enemy
agent at the right time in order to later kill it, optimizing
long-term score.

• learn: a resource-collecting agent that plans with a low
number of visits and uses a neural network for state eval-
uation during expansion, showcasing progressive self-
improvement. This is achieved by using the root state
and the post-planning root node value as training data for

5Using graphviz’s dot format: graphviz.org/doc/info/lang.html

https://github.com/ethz-gtc/npc-engine
https://www.rust-lang.org/
https://crates.io/crates/mcts
https://crates.io/crates/arbor
https://crates.io/crates/board-game
https://graphviz.org/doc/info/lang.html

Ctx

tick: uint

state: State

diff: Diff

agent: AgentId

Domain

State (associated type)

Diff (associated type)

fn update_visible_agents(ctx: Ctx, agents: &mut Set<AgentId>)

fn list_behaviors() -> [Behaviour]

fn get_current_value(ctx: Ctx) -> float

MyDomain

fn get_dependant_behaviour() -> [Behaviour]

fn is_valid(ctx: Ctx) -> bool

fn add_own_tasks(ctx: Ctx, tasks: &mut [Task])

Behavior

MyBehaviorX

fn is_valid(ctx: Ctx) -> bool

fn weight(ctx: Ctx) -> float

fn duration(ctx: Ctx) -> uint

fn execute(ctx: &mut Ctx) -> Option<Task>

Task

MyTaskX

MCTS<D: Domain>

Figure 1: A simplified diagram of the core software architecture of the planner. Types are in bold font. Rust traits provided by
the framework are in red, and user-defined structs implementing these traits are in green.

Agent 1
T: 0, Q: -0.85

V: {0: 0.0, 1: 0.0}
X _ O
_ O _
X O X

Agent 1
T: 0, Q: -0.69

V: {0: 0.0, 1: 0.0}
_ _ O
_ O X
X O X

Agent 1
T: 0, Q: -0.41

V: {0: 0.0, 1: 0.0}
_ _ O
_ O _
X O X

Move(0, 0)
N: 76, R: 0.00, Q: -0.85
U: 0.50 (0.08 + 0.43)

Move(2, 1)
N: 115, R: 0.00, Q: -0.69
U: 0.50 (0.16 + 0.35)

Agent 1
T: 0, Q: -0.65

V: {0: 0.0, 1: 0.0}
_ _ O
X O _
X O X

Move(0, 1)
N: 127, R: 0.00, Q: -0.65
U: 0.50 (0.18 + 0.33)

Agent 1
T: 0, Q: -0.28

V: {0: 0.0, 1: 0.0}
_ X O
_ O _
X O X

Move(1, 0)
N: 682, R: 0.00, Q: -0.28
U: 0.50 (0.36 + 0.14)

Figure 2: Example of graph debug output: the first layer
of the search tree for tic-tac-toe at turn 3, including user-
defined state visualization.

back-propagation–based learning (Figure 3). This simu-
lation shows that over the course of 500 epochs, the per-
formance of the agent (the amount of resources collected
within a given period) improves by more than 50 %. This
shows the value of combining heuristic-guided combina-
torial search with machine learning, as seen in state-of-
the-art AI research.

• ecosystem: a multi-threaded predator-prey simulation
where many agents with limited horizon plan in parallel.
This builds on our generic mechanism for extracting a lo-
cal state out of a global state, and shows that our frame-
work can scale to large simulations and take advantage
of multi-core architectures. In several instances, we ob-
served uninvolved people describing small stories such
as “the tiger stalked the cow until it was trapped”. This
shows that our system is rich enough to provide the base

0 200 400 600
epoch

10

15

20

wo
od

 c
ol

le
ct

ed

Figure 3: Self-improvement of a resource-collecting agent
by training a neural network with previous root node values.

material for meaningful curation of emergent narrative.

Finally, the scenario-lumberjacks folder comprises
a full experimental setup for running emergent theory of
mind experiments, as described in our previous study (Ray-
mond et al. 2020).

Discussion
Our work aims to be a solid framework on which the re-
search community and the game industry can explore the
field of emergent narrative. Though the game industry has
traditionally used game engines based on C# and C++, Rust
is increasingly being adopted, led by capable game engines

such as Bevy6 and an ecosystem of companies7. More-
over, Rust integrates with traditional languages8, allowing
for planning logic to be implemented in Rust within an ex-
isting game engine.

In the future, it would be valuable to re-implement some
domains from the literature using our framework, such as
Jaschek et al. (2019). However, many papers do not offer
enough details to do so. We hope that releasing our work as
open-source software can foster such initiatives.

Currently, our action execution model is deterministic.
This is a limitation, and we plan to add the possibility of
multiple outcomes with associated probabilities. This could
be implemented by inserting, after each action execution, a
stateless dispatch node whose children are the possible fu-
ture states – the links holding the probabilities of each out-
come.

Conclusion
We provide an open-source, generic MCTS planner frame-
work in Rust, a modern performance-oriented programming
language. Focusing on scalable multi-agent simulations, this
planner is optimally suited to simulate character activity for
emergent narrative. We hope that it will serve as an acceler-
ator for the deployment of modern AI technology within and
beyond academia and foster innovative applications.

Acknowledgements
We thank Aydin Faraji, Patrick Eppensteiner, Nora Tommila,
and Heinrich Grattenthaler for their contributions.

References
Fulton, K. R.; Chan, A.; Votipka, D.; Hicks, M.; and
Mazurek, M. L. 2021. Benefits and drawbacks of adopt-
ing a secure programming language: rust as a case study.
In Seventeenth Symposium on Usable Privacy and Security
(SOUPS 2021), 597–616.
Jaschek, C.; Beckmann, T.; Garcia, J. A.; and Raffe, W. L.
2019. Mysterious murder-mcts-driven murder mystery gen-
eration. In 2019 IEEE Conference on Games (CoG), 1–8.
Kartal, B.; Koenig, J.; and Guy, S. J. 2014. User-driven nar-
rative variation in large story domains using monte carlo tree
search. In Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems, 69–76.
Konen, W. 2019. General Board Game Playing for Educa-
tion and Research in Generic AI Game Learning. In 2019
IEEE Conference on Games (CoG), 1–8.
Pell, B. 1996. A Strategy Metagame Player for General
Chess-like Games. Computational Intelligence, 12(1): 177–
198.
Raymond, H.; Knobloch, S.; Zünd, F.; Sumner, R. W.; and
Magnenat, S. 2020. Leveraging efficient planning and
lightweight agent definition: a novel path towards emergent
narrative. In 12th Intelligent Narrative Technolgies Work-
shop, held with the AIIDE Conference (INT10 2020).

6bevyengine.org
7For example Embark Studios and Dims
8See rustcxx and rnet for C++ respectively C# integration.

Ryan, J. 2018. Curating Simulated Storyworlds. Ph.D. the-
sis, University of California Santa Cruz.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; Lillicrap, T.; and Silver, D. 2020. Mastering
Atari, Go, chess and shogi by planning with a learned model.
Nature, 588(7839): 604–609.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg, M.;
Vezhnevets, A. S.; Leblond, R.; Pohlen, T.; Dalibard, V.;
Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gulcehre,
C.; Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama, D.;
Wünsch, D.; McKinney, K.; Smith, O.; Schaul, T.; Lillicrap,
T.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; and Silver, D.
2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782): 350–354.
Ware, S. G.; and Young, R. M. 2014. Glaive: a state-space
narrative planner supporting intentionality and conflict. In
Tenth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.

https://bevyengine.org/
https://www.embark-studios.com/
https://www.dims.co/
https://github.com/google/rustcxx
https://github.com/Diggsey/rnet

	Related work
	Contributions
	Design
	Examples and Experiments
	Discussion
	Conclusion
	Acknowledgements

